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Abstract

Shape  Memory  Alloys  exhibit  a  hysteretic  shape  memory  behavior  under 

heating  and  cooling  conditions. The  purpose  of  this  research  work  is  to 

develop a control algorithm to control the position of the SMA wire actuator. 

The first scope of experiments was to test and to model the SMA behavior 

through model and behavioral-based control. Firstly, an Austinite-Martensite-

model (AM-model) is derived from the heat transfer function substituting the 

change  in  the  SMA  length  of  the  resistance  equation  for  the  austinite 

subsystem while  other  assumptions  for  the  change  in  the  material  from a 

passive to an active element to build the martensite subsystem, the model was 

tested  by  comparing  the  behavior  of  the  model  with  the  behavior  of  the 
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experiment, therefore a feedforward control structure was used. Secondly, a 

Volume-model (V-model) is derived from the heat transfer function taking the 

change  in  the  volume  in  the  SMA  wire  under  heating  and  cooling 

transformations, the model is tested in a feedforward controller. Thirdly, the 

Ohm-model  (O-model)  is  derived  from  the  previous  research  work  [1] 

evaluating the change in resistance in different phase transformations to find 

the excitation current through Ohms law, the model is tested for feedforward 

control.  All  these  model-  and  behavioral-based  approaches  are  not  able  to 

control  the  position  of  the  SMA  wire  due  to  their  strong  temperature 

dependency;  where  the  temperature  of  the  wire  cannot  be  measured  by  a 

sensor  as  it  is  not  equal  in  all  points  of  the  wire’s  surface,  while  the 

computation time in the calculations of the approximated wire temperature 

using  the  heat  transfer  equation  doesn’t  match  the  real  time  needs  of  the 

system. The second scope of experiments covers a non model-based control 

using  a  PI  controller  and  an  PID  adaptive  controller  and  they  both  have 

excellent performance in the position control of the SMA wire, the control 

error increases at high frequencies due to low response time of the material at 

natural  cooling.  The  outcome  of  this  research  work;  firstly,  a  strong 

understanding of the material capabilities as it is not based on theoretical work 

and simulations but on real experimental environment where methods can be 

validated. Secondly, a robust SMA PI tuned position controller. Thirdly, an 

adaptive controller that can be used to tune the coefficients of the SMA wire 

or any plant with unknown parameters, the advantage is that non model-based 

controllers are not temperature dependant, and they just need few tuning of the 

system  procedures.  However,  this  research  provides  a  basis  for  planning 

applications of the material in mechanical based engineering systems like in 

Smart Antennas, or in automated devices, etc. While encourages continuous 

research in the modelling part of the SMA to have a general behavioral-model 

based  on  the  material  characteristics.  All  the  experiments  are  tested  using 
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an NiTi SMA wire.  Using MATLAB/SIMULINK 6.1/5.0 and the dSPACE 

DS1104 data acquisition real time system.
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Chapter 1
Introduction

Shape Memory alloy wires are wires composed of different set of materials that have a 

shape memory behavior under temperature changes. Such type of behavior is identified 

as  a  hysteretic  behavior.  The usage of  the  shape memory behavior  of  the SMA in 

different  applications  especially  as  actuators  requires  control  algorithms  that  can 

predict  and  control  the  SMA  using  a  model  for  forecasting  and  prediction  of  the 

behavior of the SMA. So, the objective of this research work is to build this control 

algorithm for the SMA wire to control its position. The SMA wire forms the actuator 

plant  in the control  loop.   Different  theoretical  approaches and experimental  results 

based on a non model- based and a model and behavioral- based control approaches for 

the position control of the SMA will be introduced. 

All controller models are built in SIMULINK and tested with the SMA test rig using 

real time SIMULINK workshop and the dSPACE real time control box at the SRS labs 

in  the  University  of  Duisburg-Essen  in  Germany.  Model-  and  behavioral-  based 

approaches were tested  by comparing the behavior of the model with the behavior of 

the experiment i.e. in a feedforward control structure. The non model- based approach 

introduces two different ways of control which is the PI and the PID adaptive control.

This chapter will introduce the SMA in more details; the phase transformations of the 

material under temperature changes, and the set of different applications the SMA is 

used in. Chapter 2 will describe the experimental setup of the software and hardware 

components  used  in  the  experiments,  and  a  set  of  experimental  results  will  be 

introduced for the hysteretic behavior of the SMA under different parameter changes 

like  constant  load,  amplitude  and  frequency of  the  excitation  signal  which  will  be 

appended  in  appendix  C.  The  MATLAB code  used  to  calculate  the  approximated 

temperature versus elongation of the wire is appended in appendix A. Chapter 3 will 

introduce different ideas tested to build a model- based control system using the heat 

transfer equations and other behavioral assumptions. Models built in SIMULINK are 



appended in appendix B. Chapter 4 will introduce an introduction about PID control 

and adaptive control and its different approaches, the models mathematical derivation 

and  block  diagrams  are  mentioned.  The  results  of  successful  PI  and  PID adaptive 

control will be introduced and a comparison to evaluate both control schemes is done in 

terms  of  controller  performance  to  low  and  high  input  frequencies  of  the  desired 

position. The conclusions will lead to motivation and future work in the SMA material 

research and applications in Chapter 5.

1.1. SMA Material

Shape Memory Alloy (SMA),  also called smart materials has characteristics of normal 

metals  but their  behavior is different under the change of temperature;  whether this 

temperature change is external or by electrical heating. Unlike normal conductors, it 

contracts  by  heating  and  expands  by  cooling.  This  hysteretic  behavior  encourages 

scientists to try to build models for the SMA to model the hysteretic behavior of the 

metal based on different material characteristics. Some of these studies are differential 

hysteresis  modeling of SMA [2], thermodynamic model  of SMA [3],  modeling and 

simulation  of  SMA  [4],  thermomechanical  model  of  SMA  using  Prandtl-Ishlinskii 

hysteresis model [5], and a mathematical model-based on experimental data [6].

Additive  to  the  hysteretic  behavior  or  shape  memory  effect,  the  SMA  has  other 

characteristics; its pseudo elasticity, corrosion resistance, and high load to weight ratio 

which are needed in engineering appliances. However, this makes it also a candidate 

for biomedical and aerospace appliances.

1.2. Applications of SMA

SMA is used in a wide range of applications. The different doping of the shape memory 

alloy using different materials leads to different characteristics of the alloy; making it 

suitable for different applications in different industries. Some examples of these alloys 

are Ag-Cd, Au-Cd, Cu-Al-Ni, Cu-Sn, Cu-Zn-(X), In- Ti, Ni-Al, Ni-Ti, Fe-Pt, Mn-Cu, 

and Fe-Mn-Si. Examples of its usage in different industries; in the biomedical industry; 
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in  bone plates;  where memory effect  pulls  bones  together  to  allow healing,  and in 

surgical  anchor; when healing progresses, muscles grow around the wire preventing 

tissue damage that could be caused by staples or screws. In aerospace, as actuators in 

planes; electric signals are sent through the wires to allow precise movement of the 

wings. Other applications such as super elastic glasses, household appliances, robots, 

etc. [25, 26].

1.3. Hysteresis in SMA

Hysteresis behavior of the SMA is experienced under heating and cooling conditions 

which is the shape memory effect discovered in certain copper alloys during the 1950s 

and  then  found  in  nickel  titanium  (NiTi)  [9].  This  explains  the  reason  behind  the 

naming of these materials as shape memory alloys as they keep a memory of the last 

shape  they  were  in,  returning  to  their  saved shape  under  a  certain  trigger  either  a 

temperature decrease i.e. cooling or an external stress. This type of behavior can be 

used in different kind of applications as an actuator in different engineering systems.

The SMA exhibits  two main  phase transformations:  The austinite  phase or  the A-

phase, and the martensite phase or the M-phase. Another minor precursor phase called 

the R-phase that occurs in the SMA before the start of the main phase transformation 

on heating and cooling, while it can be suppressed by heat treatment of the material, 

this phase is out of the scope of this research [1, 7, 8]. The different characteristics of 

the material  under different phase transformations in its electrical  resistivity and the 

young modulus, etc. could help in specific applications and also in feedback control of 

SMA actuators [9].

The  high  temperature  phase  transformation  is  called  the  austinite,  and  the  low 

temperature phase is called the martensite [7]. When martensite,  the less symmetric 

deformed phase,  is  heated it  begins to structurally change into austenite,  the highly 

symmetric  un-deformed  phase,  at  the  austenite  start  temperature  (As).  This  phase 

change is completed at the austenite finish temperature (Af ). Similarly, when austenite 
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is cooled it begins to change into martensite at the martensite start temperature (Ms) and 

finishes the transformation at the martensite finish temperature (Mf) [10]. 

The different shapes of the SMA surface at different phase transformations is shown in 

figure 1.1. The changes in the length of the SMA, the shift  of  the atoms and their 

corresponding change in the bond’s shape leads to several differences in the properties 

of the austenitic and martensitic phases of the material.

Figure 1.1. SMA Phase Transformations. Heating the SMA leads to Austinite cubic 
shape, cooling leads to a Twinned martensite, loading leads to the Deformed martensite 
[25].

The  hysteretic  behavior  is  shown in  figure  1.2  [11].  The  difference  between  these 

temperatures is called the  hysteresis band. This figure shows a clean one hysteresis 

cycle while experiments show multiple hysteretic regions in a single hysteresis cycle 

under  repetitive  excitation  cycles.  See  figure  C2.2,  appendix  C.   The  actuation 

frequency of the SMA material is defined by the response time of the material to move 

from its maximum contraction limit at ausitnite final temperature Af to its maximum 

expansion  limit  at  martensite  maximum temperature  Mf;  i.e.  to  obtain  a  hysteresis 

cycle.
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Figure 1.2 Elongation versus Temperature; Hysteresis in SMA. Hysteresis bandwidth is 
defined as Tt and phase transformation temperatures for austinite and martensite are 
shown [11].       

1.3.1. The Austinite Phase 

The austinite  phase is the SMA material  state exhibited at  high temperature.  Under 

heating conditions, normally electrical heating the SMA wire changes its structure into 

the austinite cubic strong structure where the contraction of the wire length begins at As 

and ends to its maximum limit at Af. Each SMA has its own measured experimental 

values for As and Af.

 

1.3.2. The Martensite Phase

The martensite phase is the SMA material state exhibited at low temperature or external 

stress.  Under  cooling  conditions,  normally  natural  cooling,  the  material  is  called 

twinned martensite and under stress it’s called a deformed martensite. The SMA wire 

changes its structure to an elastic  structure causing an expansion in the wire length 

which starts at Ms and its maximum limit ends at Mf.  Each SMA has its own measured 

experimental values for Ms  and Mf.  
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Chapter 2
Experimental Setup

2.1. Introduction

The experimental setup includes all the hardware and software components used to run 

the  experiments,  it  includes  the  SMA test  rig,  power  supplies,  a  PC with installed 

MATLAB/SIMULINK, and a dSPACE control box hardware and software. 

Figure 2.1 shows the experimental setup with all connected blocks [12].

Figure 2.1. Experimental Hardware and Software Blocks [12]. 

The set of experiments done includes two scopes; the first scope of experiments was to 

examine the hysteresis behavior of the SMA changing different parameters, similar to 

the  work  done  in  [13].  While  the  second scope  of  experiments  were  done  for  the 

purpose of building a position controller of the SMA wire.  In this research, a single 

NiTi SMA is considered.
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2.2. SMA Test Rig

The SMA Test Rig includes all the hardware required for the experiment: The NiTi 

SMA wire,  a constant load connected to the wire, a slider or a removable block to 

enable the movement of the wire and the connected mass under negative and positive 

elongations,  and  a  DC  motor  that  was  connected  for  dynamic  loads  but  it  was 

disconnected and wasn’t used in the control experiments. The SMA wire used in the 

experiments is a Nickel Titanium wire, with the parameters mentioned in Table 2.1. 

Other variables used for the SMA are in Table C.1, appendix C .

Length (m) Radius (m) Density (Kg/m3) Area (m2) Volume (m3)
0.55 0.0002 6500 6.9115*10-4 6.9115*10-8

Table 2.1. The parameters of the NiTi Shape Memory Alloy.

Three sensors where connected to the test rig; a force sensor to measure the force input 

to the system, an environment temperature sensor, and a laser sensor that’s  used to 

measure the position of the SMA wire. The test rig is also connected to a power supply 

that feeds the wire with the current needed to perform the heating. The maximum input 

current is 2A limited by saturation SIMULINK blocks to 1.7A. The maximum input 

voltage is -10, +10 Volts to the dSPACE that will be discussed in the next section.

Figure  2.2  shows  the  SMA  test  rig   at  the  Dynamics and  Control  labs  ,SRS,  at 

University  of  Duisburg-Essen in  Germany.  Figures  of  the SMA test  rig  and all  its 

connections and interfaces to power supply and dSPACE control panel can be found in 

figure C.1, appendix C.
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Figure 2.2. The SMA Test Rig 

2.3. dSPACE System 

The dSPACE system is a real time data acquisition system that is needed to interface 

system parts, to close the loop, and to modify and calculate the control algorithm in real 

time. The dSPACE is responsible for converting the analog signals from the sensors of 

the test rig plant into digital electrical signals via Analog to Digital Converters (ADCs) 

and processing the data via Digital Signal Processors (DSPs) to generate the data that 

can be manipulated by the computer through the dSPACE control software graphical 

user interface,  called dSPACE ControlDesk.  Any changes in the control or process 

variables  through  this  interface  will  be  manipulated  in  the  plant  in  real  time  by 

converting these digital  signals into analog signals via Digital to Analog Converters 

(DACs) that the plant can deal with, closing the loop that contains the hardware and 

software components.

The dSPACE with its hardware DS1104 DSP board connected via an Industry Standard 

Architecture (ISA) slot to the computer and interfacing the connection to the SMA test 

rig  via  the  CP1104/CLP1104  connector  panel.  And  with  its  ControlDesk  software 
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directly interfaced with MATLAB/SIMULINK. Appendix A.1 shows a snapshot of the 

user interface of the dSPACE ControlDesk. 

The dSPACE high  performance  digital  control  system  used  in  the  experiments  is 

release 3.4, and dSPACE references are used to build and run experiments, to map the 

connections to the SMA test rig sensors in the SIMULINK Input/Output (I/O) signal’s 

blocks,  and  to  define  the  connections  of  the  DAC/ADC  for  dSPACE  to  their 

corresponding locations  in  the Real  Time Interface  (RTI)  blocks  in  SIMULINK or 

called input to controller and output of controller blocks [14, 15].

2.4. MATLAB/SIMULINK

MATLAB/SIMULINK is a programming/modeling and simulating tool used to write 

algorithms  and  to  analyze  dynamic  systems.  Coupled  with  Real  Time  Workshop 

(RTW), the SIMULINK block diagrams with the dSPACE embedded RTI blocks  used 

in  designing  the  controller  or  the model  of  the SMA wire  which can be built  and 

converted into real time C code, compiled and downloaded to the DS1104 DSP board. 

Then experiments initiated and run in the dSPACE ControlDesk software that controls 

the DSP and allow making experiments, then testing changes and monitoring variables 

of the controller, process, and plant in real time. The MATLAB/SIMULINK version 

6.1/5.0 used to write the algorithm for the wire temperature calculations solving the 

heat transfer equation, to read data files from the experiments, and to build different 

control models.

2.5. Experimental preparation

Experimental  preparation  includes  all  the  steps  needed  to  make  the  overall  system 

components interacts and communicates in the right order. Figure 2.3 shows an abstract 

block diagram illustrating  the flow of signals  in  different  parts  of the experimental 

setup.  The  flow of  the  analog  signals  from the  SMA wire  and  the  sensors  to  the 

dSPACE, and the flow of the converted digital signals from dSPACE back to the SMA 

wire. 
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Figure 2.3. Flow of signals in the experimental setup. 

The main blocks for building and running experiments were prepared; the dSPACE 

connector panel ports and their corresponding links interfacing the SMA test rig data to 

the SIMULINK RTI environment are shown in appendix B.1 to B.6.

2.5.1. Testing the Hysteresis

The  first  set  of  the  experiments  were  to  test  the  hysteretic  behavior  of  the  SMA 

explained in section 1.3 under different criteria’s. This includes testing the effect of 

changing constant load, motor variable load, frequency of the input signal, and different 

amplitudes of the input signal on the hysteretic behavior of the SMA material, similar 

to the work of Quing [13]. To see the hysteretic behavior an approximation is done 

using the MATLAB code in appendix A to calculate the wire temperature using runga-

kutta  4th order  numerical  method  via  reading  from the  data  files  stored  after  each 

experiment  in  dSPACE.  This  intermediate  level  help  in  understanding  the  material 

behavior and in one of the research objectives to build a model through testing it in a 

feedforward controller. Figure C.2 and C.3, appendix C show the hysteretic behavior of 

the SMA, and other signals from sensors in the SMA test rig. 

A general conclusion according to observations on the hysteresis behavior was that the 

SMA  hysteretic  behavior  is  affected  by  frequency,  amplitude  of  the  current  input 

signal, and the load attached to the SMA wire:
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1. At  frequencies  higher  than  0.1  Hz,  the  frequency  signal  can  be 

considered as a direct current (dc) signal with no changes so that the SMA does 

not  exhibit  hysteresis  or  shape  memory  effect  i.e.  positive  or  negative 

elongation is exhibited at high frequencies.

2. At frequencies lower than 0.1 Hz the material recognizes the change in 

the input and reacts accordingly. 

3. No  major  differences  are  observed  experimentally  from  different 

amplitudes of the input current. So, the material hysteretic reaction to sinusoids 

with 1A, 2A, and 3A amplitudes were exactly the same according to hysteresis 

plots based on approximations of the wire temperature. 

4. No input currents higher than 2A are allowed since high current make a 

shear force that cuts the wire into two pieces. 

5. Using different constant loads of 0.5 kg,1 kg, 2 kg, 3 kg, and 4 kg have 

no major effect on the SMA hysteresis.

6.  A very high constant load or a manual high tension on the SMA wire is 

capable  of  causing  a  functional  fatigue  in  the  material.  The  material  has  a 

lifetime  based  on  the  actuation  cycles  it  responds  to  and  it’s  around  50 

hysteresis cycles for the NiTi SMA wire used in the experiments. So, the SMA 

wire is changed so many times during the experiments. 

Other experimental observations while testing the hysteretic behavior of the SMA are 

also used to deduct a dynamic model of the SMA wire. However, part of the system 

dynamics is unknown which is the friction in the mass pulley and in the slider surface 

that has a non negligible effect to the measured force. A general observation from the 

force sensor measurements was that the force input to the system varies between 17.5 

to  30N. And the  current  associated  to  these input  forces  varies  between 0 to  1.7A 

respectively. And this leads to a logical inference that under high current i.e. heating 

phase the tension force required for contraction of the SMA wire in the austinite phase, 

to cancel friction, and to pull the mass up must be higher than the force in the case of 

zero current i.e. cooling phase for expansion of the SMA wire in the martensite phase 
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pushing the mass down. The constant mass used forms a variable load during runtime. 

Note that all experiments afterwards were done without the existence of the variable 

load from the motor, since it was disconnected from the test rig. 

Chapter 3
Model- and Behavioral-Based Control of SMA
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3.1. Introduction

The purpose of the model- and behavioral-based control of the shape memory alloy 

wire  is  to build  a robust  predictive  model  that  can lead to  a  robust  control  of  this 

nonlinear material. The nonlinear material doesn’t only change the behavior according 

to the excitation signal but it changes its characteristic parameters during the lifetime of 

the  input  change.  Therefore,  this  type  of  behavior  encourages  the  adoption  of  this 

approach and experimenting its results. The model-based control approach is used to 

build a controller based on a known mathematical model of a characteristic parameter 

of the actuator plant, which can control the SMA wire behavior according to the model. 

This  model-based  approach  for  controlling  the  SMA  is  used  in  the  O-Model 

feedforward controller  which will be discussed in section 3.4. However, behavioral-

based control of the SMA is used to build a controller model according to the behavior 

of the SMA wire under different conditions of heating and cooling where it behaves in 

different  manners  identified by the two phase transformations;  the austinite  and the 

martensite.  Here,  the plant  dynamics  will  not  respond to  parametric  changes in the 

model but it  will change according to the expected behavior.  This behavioral-based 

control approach for controlling the SMA wire is used to build two controllers the AM- 

Model and the V-Model feedforward controllers which will be discussed in section 3.2. 

Two different intersecting approaches are examined here, and both cannot be validated 

due to different reasons that will be mentioned in section 3.3.

3.2. Behavioral-Based Approach
 
Behavioral-based  controllers  designed  here  are  based  on  using  the  heat  transfer 

equation to find the desired elongation of the SMA wire according to the temperature 

changes  assigned  with  input  current  changes.  This  elongation  is  feed  into  a  PI 

controller which will then output the current needed for the plant to enforce the SMA 

wire to move i.e. either to contract or to expand to the required position. Figure 3.1 

shows the schematic diagram of the behavioral-based controller approach. The input to 

the heat transfer function block is the SMA wire current (i) to find the temperature (T) 

of the wire, then this wire temperature is the input for the model built according to 
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different criterias to find the desired elongation i.e. the expansion or contraction, then 

the PI controller measures the current needed for the SMA wire to move the SMA wire 

from its actual position (La) to the desired position (Ld), and this process applies to 

each manual change of the input current from the power supply.

Figure 3.1. Schematic Diagram of the Behavioral-Based Feedforward Controller Main 
Blocks. 

3.2.1. The AM- Model

The AM Model is a model of Austinite-Martensite phase transformations of the SMA. 

The idea was to use the heat transfer function and to move it from an estimate of the 

heat transfer in the SMA material as a normal conductor, to an equation that includes 

the behavior of the SMA wire. Relating both the heat transfer affected by changes in 

current and temperature of the wire with the change in the length of the SMA wire. And 

this can only be achieved by using the equation of the electrical resistance in terms of 

the length of the material.

3.2.1.1 .Heating Phase- Austinite

The heat transfer thermal distribution equation is used to model the heating phase of the 

SMA wire, defined by equation 3.1:

where ρ denotes the density of the SMA wire, c is the specific heat, V is the volume of 

the SMA wire, i is the current through the SMA wire, R is the electrical resistance of 

the SMA wire,  h is the heat convection coefficient,  A is the cross sectional are of the 

SMA wire,  T is the temperature of the SMA wire, and  Te is the temperature of the 

14



environment  surrounding  the  SMA wire.  The  heat  dissipation  due  to  radiation  and 

conduction is neglected from the equation, while   is the heat generated from the 

external power source. And  is the heat convection.

Equation 3.1 as is doesn’t model any type of behavior for the SMA wire; so to relate it 

to the behavior  of the SMA at the heating process,  or called going to the austinite 

phase;  an  understanding  of  system input  that  causes  a  certain  behavior  is  needed; 

applying a variable current (i) generates then the output response as a change in the 

length  of  the  SMA (L).  Hence,  increasing  the  temperature  of  the  SMA when  i is 

increasing.

The derived L for the heating part will be used to build a subsystem that converts a 

temperature  input  to  the  position  of  the  SMA  wire  during  heating.  Therefore,  the 

electrical resistance equation is used.

Where is the electrical resistivity of the wire, L is the wire length, and  A is the cross 

sectional area of the wire. Substitute equation 3.2 in 3.1. 

Then,  the  following  equation  defines  a  relation  between  the  temperature  and  the 

elongation of the wire, where the elongation can be decided by subtracting the L value 

from  the  original  length  of  the  wire,  according  to  the  changed  variables  in  the 

experiments.
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Equation  3.3  forms  the  austinite  Subsystem  that  is  tested  experimentally  in  a 

feedforward and PI controller. Note that this equation applies to the heating phase i.e. 

the austinite phase only. And it takes into consideration the change in the length of the 

wire accompanied with a change in the electrical resistance of the material,  while it 

doesn't take into consideration other changes; like the change in the electrical resistivity 

of the wire, the heat convection coefficient, or the volume of the wire. However, for the 

martensite  phase,  it  can exist  under  heating  conditions  just  when an external  stress 

force is  applied that  is capable  to deform or to expand the SMA wire.  So, it’s  not 

covered by this model.

Equation 3.4. shows another austinite model in terms of wire temperature as its input 

and a known Ld (desired position) and La (actual position) then the current as an output 

of the subsystem can be found according to the required elongation. This model is not 

tested experimentally.

Figure 3.2 shows the SIMULINK controller model for the austinite phase that is tested 

in a feedforward controller. See appendix B7 to B9 for the masked blocks under the 

SIMULINK blocks used in this controller.
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Figure 3.2. The Austinite Model Feedforward and PI Controller

3.2.1.2 .Cooling Phase- Martensite

An assumption that the material changes from a passive element to an active element 

was  made  to  model  the  behavior  of  the  SMA  wire  under  the  cooling  phase.  The 

behavior of an SMA was mostly resistive and at cooling it acts like a capacitor, so the 

elongation of the material surfaces from their cubic case at austinite to the deformed 

shape at martensite releases an energy similar to a stored electrical capacitive energy, 

and this released energy is shown as an expansion of the wire also in the movement of 

the connected mass, i.e. a case of energy conversion from electrical to mechanical.

The  reason  behind  this  idea  or  assumption  of  energy  conversion  that  the  existing 

mathematical models of the SMA parameters don’t consider the non-resistive part of 

the  SMA.  A  mathematical  equation  derived  for  an  SMA  spring  which  relates  the 

electrical resistance with the applied strain and temperature [1], while no studies are 

done to show if there is any non-resistive components in the SMA. However, another 

mathematical equation derived for the SMA spring that defines the material state by a 

fraction called the martensite fraction which relates the deflection and temperature of 

the SMA material [16]. The full transformation of an SMA to martensite occurs at a 
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martensite fraction (η) of 0.8 to 0.9 and this fraction will be used in the assumption of a 

capacitive component later on.

To move from austinite to martensite at natural  cooling i.e.  i=0 ,   the heat transfer 

equation cannot be used as is to calculate the elongation of the SMA since the  is 

neglected here. Then, the assumption will be that capacitive energy  equals kinetic 

energy   experienced under cooling condition as follows:

Where C: capacitance, and v (t): voltage.

Where m: mass of connected load, and v (t): velocity.

Then the result for this assumption will be: 

Approximate C to be the value of the martensite fraction 0.8> (η)>0.9 to have full 

martensite phase transformation. And substitute the voltage in (3.5) in terms of ohm’s 

law:

And the velocity as the differentiation of  the displacement of the mass in the y-

direction which is equal to the elongation of the SMA in the x-direction:

 

This results in equation (3.6) that relates the length of the SMA material with the inputs 

to the system. 
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However, substituting equation (3.2) in (3.6) as follows:

Then, a model similar to the current austinite model in equation (3.4) can be derived for 

the martensite phase that is also not tested experimentally.  But here  i=0, since it's a 

natural cooling process, but the assumption will be kept as is for deriving the martensite 

model in terms of the wire length change as a function of temperature change in later 

stage.

 

Similar to steps done in modeling the heating part, a model that relates the position L 

for the martensite phase with the input temperature will be derived in order to control 

the position or shape memory behavior of the SMA under cooling. But note that under 

the  same  current  but  with  certain  amount  of  stress  force,  the  wire  can  move  into 

martensite phase even without cooling. In this case equalizing equation (3.4) and (3.7) 

will lead to the following:

Equation (3.8) relates L for the martensite phase with the temperature change, which is 

decreasing in this phase,  La denotes the length of the SMA wire reached at austinite 

phase before cooling starts at time to till the maximum expansion of the wire is reached 

at time tm.

Figure 3.3 shows the SIMULINK controller  model  for the martensite  phase that  is 

tested in a feedforward controller. 

See appendix B7, B8, and B10 for the masked blocks under the SIMULINK blocks 

used in this controller.
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Figure 3.3.The Martensite Model Feedforward and PI Controller

3.2.1.3 .Heating Cooling Combined 

The heating cooling combined controller forms the AM-model. Both the austenite and 

martensite will be tested to see if the overall behavior of the SMA can be controlled in 

both sides of the memory effect or hysteresis.

Then equations (3.3) and (3.8) will be used. The selection criteria will be done through 

an if statement block and an if statement activated subsystems. The if statement block 

considers  two conditions  to  make  one  of  the  subsystems  active  at  a  time,  using  a 

common write variable, memory, and read variable blocks:

Figure 3.4 shows the SIMULINK AM-model controller for the austinite-martensite 

phases of the SMA that is tested in a feedforward controller.
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Figure 3.4. The AM Model Feedforward and PI Controller

3.2.1.4 .Experimental Results

The set of controller models are tested in a feedforward control structure. The response 

from the models aren’t perfect but they show follow-up of the actual position signal to 

the desired position signal. Figure 3.5 shows the set of results for the different models. 

The results of testing both models, the austenite and the martensite separately shows 

promising results. The output in the austinite case using a signal generator as an input 

switched to the model output and feed into the PI controller defines an arbitrary signal 

that  the  SMA  material  can  follow,  but  it  needs  more  validation;  taking  into 

consideration  all  temperature  dependant  changes  in  the  behavioral  heat  transfer 

equation.  However,  the martensite  model  results  shows a  valid  assumption  of non-

passivity in the material.
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Figure 3.5. Austinite, Martensite, and AM models results in feedforward with PI 
controllers. Time in (s) versus actual position (red) and desired position (blue) in (mm).

3.2.2. The V-Model

The V-Model is an extension of the AM-model discussed previously. Here the idea is 

to take the volume change of the SMA into consideration in the heat transfer equation 

for calculating the desired length of the SMA wire.

Therefore, the volume change is expressed in terms of the length of the wire as follows: 

 
Differentiate equation (3.9) by dL to get:
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Substitute equation (3.2) in equation (3.1):

Substitute equation (3.9) in equation (3.11) to get:

Equation 3.12 forms the V-model mathematical formula that relates the change of the 

length of the SMA wire to the wire temperature change taking the volume change of 

the  material  into  consideration,  this  system can  be  used  to  model  the  heating  and 

cooling of the SMA wire neglecting the case when austinite moves to martensite under 

stress.

Another derivation for the current of the SMA material, which is not tested 

experimentally:

On the other hand, assuming heat distribution in all parts of the SMA wire i.e. 

/  =0; then differentiation of equation (3.11) by dL leads to the following:
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Substitute equation (3.10), a simplified relation between the temperature and the 

current can also be derived, and this is also not tested experimentally:

Figure 3.6 shows the SIMULINK controller model for the V-model that is tested in a 

feedforward controller. See appendix B11 for the masked blocks under the SIMULINK 

blocks used in this controller.

Figure 3.6. The V-Model Feedforward and PI Controller

3.2.2.1 .Experimental Results

The V-model is tested and was unable to control the position of the SMA. Figure 3.7 

shows the results of using the V-model in a feedforward with a PI controller. To let the 

controller  respond, the signal generator input was used as the input desired position 
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instead  of  using  the  desired  position  from  the  output  of  the  V-model  subsystem 

directly. The response is from the PI controller not from the model due to the mismatch 

between the real temperature and the calculated wire temperature.

Figure 3.7. V-Model results in feedforward with PI controllers. This is using the signal 
generator as input. Time in (s) versus actual position (red) and desired position (blue) in 
(mm).

3.3. Conclusions on the Behavioral-Based Approach

The  conclusion  of  testing  the  behavioral-based  models  according  to  ideas  and 

assumptions  that  takes  into  consideration  behavioral  aspects  and  changes  in  some 

parameters  of  the SMA wire  to  control  its  position.  These  ideas  summed into  two 

different behavioral models; the AM-model and the V-model were unable to control the 

position of the SMA wire due to different reasons:
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1. There is no practical way that can measure the wire temperature. Hence, there is 

no  online  measurement  of  it  since  the  wire  temperature  is  not  equal  in  the 

different points of its surface.

2.  The heat transfer equation SIMULINK model that is used to approximate the 

wire temperature using numerical methods needs computation time that doesn’t 

match the fast temperature changes of the SMA wire in real time, i.e. unlike the 

case of online sensor measurements. And since the models are all temperature 

dependant, while they include a derivative term of the temperature which will 

be zero at steady state the models cannot be validated.

3. The heat transfer function used as a basis to derive the elongation measurements 

in the SMA material is derived as a general case for heat equilibrium in metals, 

while in the case of the SMA, many variable parameters should be considered 

in solving this equation, the resistance, the length, the volume, the density, and 

the heat coefficients. That were not all considered in these models.

3.4. Model-Based Approach

The behavioral-based control derived in previous sections is a new approach in shape 

memory alloys to tackle the usage of the heat transfer equation as the behavioral model, 

to discuss a non-passivity of the material, and to consider the effect of volume change 

in  the  SMA  material.  While  these  behavioral  approaches  cannot  be  validated  as 

mentioned previously,  the  next step will be to test the possibility of using a model-

based controller using a model for the SMA from the literature, which is derived based 

on experiments on the SMA. There are no mathematical models found for the SMA 

except few that are more related to mathematical models of hysteresis or models on 

different multiple hysteresis in the material, which cannot be used in this research.

The model-based approaches depend on having a representative model of a process and 

using an inverse of the model of the system. In this research, a mathematical model for 

one of the changing parameters of the SMA wire will be used which is the electrical 

resistance. The change in the SMA electrical resistance as a function of temperature is 
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hysteretic. Then, the resistance model will be used to build the Ohm-Model to serve the 

purpose of position control of the SMA. 

3.4.1. The O-Model

The O-model is the abbreviation of Ohm-model. The idea here is to use Ohm’s Law to 

calculate the current needed to feed the SMA under the accompanied changes of the 

SMA  resistance  during  different  heating  and  cooling  cycles.  The  resistance 

mathematical model in equation (3.15) is derived in a study for R. Velazquez et al. [1] 

depending on an empirical relation proposed by Liag and Rogers [16] which gives the 

martensite fraction in terms of temperature. 

The  model  is  a  resistance  model  for  an  SMA spring  in  terms  of  temperature  and 

deflection i.e. elongation of the material. Although, the experiments used an SMA wire 

and not an SMA spring, but the wire itself behaves similar to a spring with unknown 

stiffness [9], so the same formulas can be used for the SMA wire as an assumption 

without problems.

Equation (3.15) defines the resistance of the SMA as function of  the deflection or 

elongation and T the temperature of the SMA wire. The resistance changes according to 

the start and final temperatures of the austinite phase.

Then, to have a complete  mathematical  resistance model for the SMA to use it  for 

modeling  the  behavior  in  both  directions  i.e.  heating  and  cooling,  the  resistance 

function for the martensite phase will be derived as well. And since the austinite has 

less resistance than the martensite, while martensite phase starts with the resistance of 

the final  austinite phase, reversing the temperatures and the equations order will  be 
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done to  develop  the mathematical  model  of  the  martensite  resistance  as  follows in 

equation (3.16):

Equation  (3.15)  will  be  the  active  subsystem when heating  the  SMA and equation 

(3.16) will be the active subsystem when cooling the SMA.

Using Ohm’s Law:

Where V is the voltage, I is the current, and R is the resistance. The input voltage to the 

system is  used to  measure  the change in  the  current  of  the SMA according  to  the 

resistance  changes  when  temperature  is  changed.  The  phase  transformation 

temperatures used to build the O-model can be found in table C.3, appendix C. These 

values are taken from the experimental results of Kötter [12] on the same SMA wire 

used in the experiments.

Figure 3.8 shows the SIMULINK controller model for the O-model that is tested in a 

feedforward controller without PID usage. See appendix B12 and B13 for the masked 

blocks under the SIMULINK blocks used in this controller. The if statements selection 

criteria was explained previously is the phase transformation temperatures.
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Figure 3.8. The O-Model Feedforward Controller.

3.4.1.1. Experimental Results

The Ohm model-based controller was unable to control the position of the SMA. The 

reason is also that the model cannot be validated since its dependant in the change of 

the wire temperature that cannot be measured by a temperature sensor as it’s not equal 

in all points of the SMA material surface, and computations of the temperature using 

the heat transfer equation don’t match the real time requirements of the system. 

Figure 3.9 shows how the problem in the calculation of temperature of the wire is the 

reason for the non response of the controllers tested. The response in extreme inputs i.e. 

switch  on  or  switch  off  cases  of  the  power  supply  based  on  the  natural  dynamic 

behavior of the SMA wire, so it's not based on the calculated temperature of the wire. 

A fast manual switch on of the power supply in (a) and (b) doesn’t show the real Twire 

reached. A fast switch off of the power supply in (c) shows a fast decay of Twire but 

not to the real Twire reached.  The selection criteria for the expected resistance at a 

certain temperature of the wire is not working due to the problem in wire temperature 

calculations. So, the expected corresponding current is not the value required for  the 

SMA wire to control its position.
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(a) Switch on power supply results, no success in position control

(b) Switch on power supply results, no success in position control

(c) Switch off power supply results, no success in position control.
Figure 3.9. O-Model results  working as a feedforward controller.  The curves to the 
right show the changes in resistance (colored). Wire temperature (white). The curves to 
the left show the current change according to manual voltage change and so the actual 
position in (cyan).

3.5 .Conclusions on the Model-Based Approach

Model-based controller was unable to control the position of the SMA wire, due to its 

dependability on the temperature of the wire changes that cannot be measured. 

The next step will  be experimenting  the non model-based approach and  testing the 

possibility of using PID and PID adaptive controllers since there is a good response 

from the PI  when signal  generator  input  has  been  chosen in  previous  experiments, 

while generally PI controllers are used for actuator plants like in the SMA. However, 

an  adaptive  controller  will  also  be  a  good choice  since  no  plant  dynamics  can  be 

derived as there are a lot of unknowns here, as it will be shown in Chapter 4. 
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Chapter 4
Non Model-Based Control of SMA

4.1. Introduction

Non model-based control includes different kinds of control types, some research have 

been conducted for the position control of SMAs using non model-based approaches; 

using current limiter  and power limiter  PID controllers,  using fuzzy logic,  or using 

neural network and sliding mode controller [17, 18, 19]. And since the aforementioned 

model-based and behavioral-based controllers cannot be validated due to the issue in 

following the wire temperature changes. Two different non-model-based approaches to 

control  the  position  of  the  SMA will  be  derived  and  experimented  here;  the  PID 

controller, and the PID adaptive controller.

4.2. PID Controller

Proportional Integral Derivative (PID) controller is the most widely used non model-

based controller  in the industry.  Figure 4.1 shows the diagram of a  PID controller. 

From the diagram it’s easy to notice that proportional means the output is proportional 

to the error, integral means the output is proportional to the integral of the error, and 

derivative means the output is proportional to the derivative of the error, and each has a 

special gain denoted by proportional, integral, and derivative parameters which are kp, 

ki, and kd respectively. Proportional block increases the sensitivity of the controller to 

system error.  Integral  block  accelerates  the  speed  of  the  controller  to  the  required 

reference. And derivative block increases the control stability while slows the change in 

the controller output [20]. 
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Figure 4.1. PID Controller.

4.2.1. PI Position Control Experimental results

The first experiments will be to use a PI controller trying to control the position of the 

SMA wire. There are special tuning algorithms for the PID like Ziegler Nichols [21] 

based on different critereas like step response of the plant or critical gain and critical 

period.  But  here,  manual  tuning  is  used  optimizing  the  controller  through  the 

performance  seen  from experiments  under  different  sets  of  Kp and Ki  parameters. 

Figure 4.2 shows the SIMULINK of the PID controller used to control the position of 

the SMA. See appendix B8 for the masked blocks under the SIMULINK blocks used in 

this controller. 
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Figure 4.2. The PI Controller for position control of the SMA.

The results of the PI controller proves its ability to control the position of the SMA 

wire robustly with very small  control error in the range of  [0.1-1]  mm. Under high 

frequencies  in  the  input  reference  desired  position  above  0.1  Hz  the  control  error 

increases since the SMA wire cannot follow the curve due to natural cooling delay due 

to  heat  convection,  i.e.  the  SMA wire  cannot  follow such  high  frequencies  of  the 

desired position since the heating process is faster than the natural cooling process.

 Figure 4.3. Shows the results of experimenting the PI controller under different set of 

frequencies.  Note  that  the  variable  load  through  the  motor  is  not  part  of  the 

experiments, and the motor is totally disconnected from the test rig.
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Figure 4.3.  PI Position Controller Results, using Kp= 250, and Ki=20. The desired 
input position is a sinusoid with amplitude=3. (a.1) to (a.5) Time in (s) versus actual 
position (red) and desired position (blue) in (mm). (b.1) to (b.5) Time in (s) versus 
control error under different frequencies of desired position.

Table C.4 appendix C lists the measured values for control error margin under different 

frequencies.

4.3. Adaptive Control

Since  adaptive  control  performs  a  redesign  of  the  controller  in  accordance  to  the 

changing parameters of the plant, adaptive control is a good choice in the SMA wire 
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plant  case.  The  next  sections  will  introduce  the  basic  two  approaches  of  adaptive 

control that leads to the way how the PID adaptive controller is derived and tested on 

the SMA wire.

      
4.3.1. MRAC Control

Model reference adaptive controller is shown in figure 4.4. The basic principle of this 

adaptive controller is to build a reference model that specifies the desired output of the 

controller, and then the adaptation law adjusts the unknown parameters of the plant so 

that the tracking error converges to zero [22].

Figure 4.4. MRAC adaptive control system [22]

4.3.2. STC Control

Self tuning adaptive controller is shown in figure 4.5 [22].  The basic principle of this 

adaptive  controller  is  to  have  a  parameter  estimator  that  estimates  recursively  the 

unknown  parameters  of  the  plant  and  feeds  it  to  the  controller.  This  recursive 

estimation based on the parameters that fits the past input-output criteria of the plant.
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Figure 4.5. STC adaptive control system [22]

4.3.3. Designing the PID Adaptive Controller

For both MRAC and STC adaptive control approaches the plant dynamics cannot be 

estimated for the SMA. So, choosing an estimated parameter from the plant dynamics 

will not be an efficient way of handling the problem, testing the choice of position as an 

estimated parameter will be used in step1. A combined approach that joins MRAC and 

STC  will  be  used  for  building  a  PID  adaptive  controller  tested  with  very  good 

performance.  The  reason for  calling  this  approach  a  combined  approach,  since  the 

estimated  parameters  will  be  the  controller  parameters  that  will  adapt  to  the  plant 

unknown parameters recursively like in STC, while the tuning will be according to the 

tracking error convergence to zero like in MRAC, since the reference model here is the 

plant itself as will be shown in step2.

Figure  4.6 shows the  MRAC adaptive  controller  with  a  first  degree  plant  and  two 

estimated parameters [22].

Figure 4.6. MRAC system for a first order plant [22]

The equations corresponding to the MRAC controller in figure 4.6 are the following:

Where v(t) denotes the signal vector, r is the reference input signal, and y is the output 

signal.
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Where   is  the  vector  of  the  controller  adaptive  parameters;  defined  by  their 

derivatives in terms of plant parameters to derive the adaptation law as follows:

Where,  is the derivative of the estimated parameter corresponding to the reference 

signal  r and   is the derivative of the estimated parameter  corresponding to plant 

output signal y,  e is the error signal, sgn(bp) determines the direction of search for the 

proper controller parameter, and  γ is the adaptation coefficient.

Step1: Building an adaptive controller

Choose  position  as  the  estimated  parameter  and  the  position  error  as  the  second 

estimated parameter. 

Let the signal vector be:

Here  is the position error, and  is the actual position.

Let the controller estimated parameters be:

Where  is  the  estimated  parameter  corresponding to  error  signal,  and  is  the 

estimated parameter corresponding to actual position signal, then the adaptation law is 

the following:
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Substitute bp as 1 since there is no transfer function for the SMA wire dynamics to 

build the controller. Figure 4.7 shows the SIMULINK block diagram of the adaptive 

controller in (4.4). Note that The SIMULINK blocks and its interfaces used to build 

this controller are the same used in the PI control case. The only difference here is the 

masked block of the adaptive controller.

Figure 4.7. Adaptive controller based on adaptation law (4.4)

Step 2: Building the PID adaptive controller

In step 1, using the error signal as one of the signals used for adaptation helps the 

controller to react. And as there is no equation expressing the plant dynamics, to build a 

PID adaptive controller the assumption will be to use the controller parameters as the 

estimated parameters of the plant; while this will help the PID controller to self tune 

itself  which is a combined approach of MRAC and STC. Figure 4.8 shows a block 

diagram describing the idea. 
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Figure 4.8. The PID adaptive controller combined MRAC and STC.

                                                                

In figure 4.8, e(t) denotes the error signal equals the desired position subtracted from 

the  actual  position  of  the  SMA to  insure  convergence  of  the  error  to  zero  like  in 

MRAC.  The  reference  model  of  the  MRAC  is  the  plant  itself;  the  adaptation 

coefficients are the estimator coefficients of the STC to let the PID adapt its controller 

coefficients to the plant. The block attached to the PID is a block to explain that the 

output of the controller is converted using blocks that derive the current into the SMA 

wire.

Based on the formulas of regular PID controllers, the idea in figure (4.8) that the , 

 ,  and   are the estimated parameters of the plant while they are recursively 

tuning their corresponding controller parameters as well with the following adaptation 

law, so that the PID controller coefficients are just the integral of the adaptation law. 
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 is the proportional gain,  is the integral gain,  is the derivative gain. While 

 is the proportional estimated parameter,   is the integral estimated parameter, 

and  is the derivative estimated parameter. 

So the integral form of the estimated vector is:

 

And the signal vector corresponding to each of them like normal PID controller signals 

as follows:

Where  is the actual position of the SMA wire and is the desired position. 

The  output  of  the  PID  Controller  will  be  the  following  sum  of  the  proportional, 

integral, and derivative outputs:

To simplify the representation of equations in time domain, the s-domain will be used. 

Where an integral is a division by s and a derivative is a multiplication by s. And 

instead of using t as the time samples, i as the iteration number will be used as follows:
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Then the output of the controller can be expressed by the stable system shown below,

To have the output current from the plant, these values of voltages should be divided by 

the resistance R=8Ω to approximate the current which is the square root of this value 

and saturated in the range 0 to 1.7 A as follows:

Figure 4.9 shows the SIMULINK blocks for the PID adaptive controller in equation 

(4.5). A similar PID adaptive controller is derived by Feng Lin, et al. [23] using Frechet 

derivative and SISO system formulas, while here simplified formulas and combination 

of adaptive approaches lead to this model.
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Figure 4.9. PID adaptive controller for position control of the SMA.

4.3.4. Experimental Results

Equations of MRAC controller with adaptation law (4.3) are tested experimentally and 

fail to have any response to control the position.

Refinement of equation (4.3) into (4.4) in  step1 to make the parameter dependant on 

the error signal instead of the reference signal makes the controller starts to work and 

control the position of the SMA, while the performance is low.  

Figure 4.10 shows the results  of testing the adaptive controller.  The results  show a 

possible position control but with high control error.
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Figure 4.10. Adaptive Controller in (4.4) result with γ =1. Desired input position is a 
sinusoid with amplitude=3, and frequency=0.06Hz. Time in (s) versus actual position 
(red) and desired position (blue) in (mm). 

Using same adaptation law in (4.5) and refinement of the PID adaptive controller to be 

dependent on the error signal as the signal vector that will be multiplied to all controller 

parameters i.e. v(t)=[e   e   e]T leads to a new enhanced version of the PID adaptive 

controller in figure 4.9.

Figure 4.11 shows the results of testing the enhanced PID adaptive controller with the 

error signal as the signal vector for all controller parameters. Appendix B14 shows the 

SIMULINK model of the enhanced PID adaptive controller used. 

A snapshot of the experiment run in dSPACE showing the adaptation coefficient and 

the adaptation parameters Kp, Ki, and Kd in figure C.4 appendix C. 
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Figure 4.11. Enhanced PID Adaptive Controller results, all adaptive PID parameters 
multiplied by the error signal vector with γ =1. Desired input position is a sinusoid with 
amplitude=3, and frequency=0.06Hz. And controller adaptive coefficients
Kp, Ki, and Kd are 119, 0.88, and 0.031 respectively. Time in (s) versus actual position 
(red) and desired position (blue) in (mm).

To remove the ripples shown above, Step2 is done to build the PID adaptive controller 

with adaptation law in (4.5) that’s tested and shows excellent results in controlling the 

position of the SMA. 

Figure  4.12  shows the  position  control  results  of  the  PID adaptive  controller  with 

excellent performance,  note that there is a time interval needed for adaptation. Also 

note that the signals here are cleaner and smoother than the signals in figure 4.11 but 

there is a delay between the desired signal and the actual signal. 

Multiple set of experiments show that the PID adaptive controller  with error vector 

signal  is  an  enhanced  PID  adaptive  controller  with  more  consistency  and  less 

adaptation time. 
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Figure 4.12. PID Adaptive Controller, with γ =1. Desired input position is a sinusoid 
with amplitude=3, and frequency=0.06Hz. Time in (s) versus actual position (red) and 
desired position(blue) in (mm).

4.3.4.1 .Changing the desired position Frequency:

Figure  4.13.  shows  the  results  of  testing  the  enhanced  PID  adaptive  controller  in 

Appendix B14  under different frequencies of the desired position.
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Figure 4.13.  Enhanced PID Adaptive Position Controller Results with γ =1. Desired 
input position is a sinusoid with amplitude=3.  (a.1) to (a.5) Time in (s) versus actual 
position (red) and desired position (blue) in (mm). (b.1) to (b.5) Time in (s) versus 
control error under different frequencies of  desired position.

4.3.4.2 .Changing the adaptation coefficient:

Table C.5. appendix C shows the experimental results of position control error under 

different sets of adaptation coefficients γ= (1, 0.5, and 0.3), for this plant it’s proved 

that  for  γ=1 under  different  sets  of  experiments  it  gives  the best  performance,  any 

increase or decrease will affect the performance of the adaptive controller.

The online Kp, Ki, and Kd parameters running the PID adaptive control under different 

sets of adaptation coefficients gives the following values for the PID gains Kp= [13.2-

13.9]; Ki = [0.3;1]; and for Kd=[0.33;0.39]. So, these values can be used for tuning a 

PID controller with coefficient’s ratios [Kp: Ki: Kd] = [14:1:0.3]. Then, this adaptive 

controller can be used to tune the Kp, Ki and Kd coefficients for any linear or nonlinear 

plant with unknown dynamics.
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However,  multiple  set  of  experiments  have  shown that  the  enhanced  PID adaptive 

controller in figure C.4 appendix C is more consistent than the PID adaptive controller 

in figure 4.9. And its best results  are seen at  γ=0.3 with [Kp, Ki, Kd] = [2.5, 108, 

0.095]. 

4.3.4.3 .Using Chaotic Wave Signal  Input:

Figure 4.14 shows the results of using an arbitrary chaotic signal as the desired position 

for  both  the  PI  controller  and  the  PID  adaptive  controller.  The  chaotic  signal  is 

generated using the Chua’s equations set [24]. Appendix B15 shows the SIMULINK 

model used to generate this signal. The performance of both controllers is very good 

with few delays in the actual position, but the overall performance of the PI controller 

is better. The reason for testing a chaotic wave signal as the desired position is to check 

the robustness of the non model-based controllers  in the case of an arbitrary signal 

input which is unlike the sinusoidal consistent form. Especially for the case of PID 

adaptive controller  that  shows that its adaptability is not mainly based on the input 

signal  consistency,  while  it’s  more  dependent  on  the  plant  dynamics  and the  error 

signal. 
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Figure 4.14. PI and enhanced PID adaptive controller results using chaotic signal as the 
desired position. Time in (s) versus desired position (blue) and actual position (red) in 
(mm).

4.4. Conclusions on the non model-based approach

49



The non model-based approach using tuned PI controller  and PID adaptive  control 

shows its success and robustness to control the position of the SMA wire. Compared to 

model-based  and  behavioral-based  approaches,  it’s  easier  to  implement,  and  more 

successful as it is not temperature dependant, while requires few manual tuning and 

calibration of the system mechanics or position offset signal in some times.

Comparing the results of the PID adaptive controller in figure 4.9 with the enhanced 

PID adaptive controller in figure C.4 appendix C. The second is more consistent, which 

shows that tuning and experimental trial and error is the best way to have a consistent 

control.

Comparing the performance of the PI controller to that of the PID adaptive control, the 

following is proved by experiment:

     1. The performance of the PI position controller is better and with small control 

error difference of [0.1-1] mm ranges than in the PID adaptive control under different 

sets of desired position frequencies.

     2. PI and PID adaptive controller both have decreased performance at frequencies 

higher than 0.1 Hz due to the normal behavior of the SMA especially in the natural 

cooling region which needs about 20 sec for heat convection.

 

     3.  PID adaptive controller has the benefit over PI that the control error reaches a 

fixed limit of [-3, 3] mm increasing the frequency of the desired position. While for PI 

controller the control error keeps increasing. Figure 4.15. shows the performance of the 

PI and PID adaptive controllers under different frequencies.
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   Figure 4.15. Position Control Error of PI and PID adaptive controller under    
   different frequencies of the desired position.
   

    4. Another advantage for the PID adaptive controller that the monitored Kp, Ki, Kd 

parameters can be used to tune a regular PID controller to control the system. On the 

other hand, the values doesn’t reach the experimental tuned PI controller gains which 

are Kp=250 and Ki=20 and this will also lead to the conclusion that  this adaptive 

concept  can  be  used  just  for  first  step  of  tuning  while  more  manual  tuning  of  the 

controller to fit the system plant changes is still needed.
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Chapter 5
 Results and Conclusion

5.1. Conclusion

The SMA hysteretic behavior under changes of the excitation frequency, amplitude of 

the  current  input  signal,  and  the  load  attached  to  the  SMA  wire shows  its  main 

dependency on the frequency of the input signal, proved in Chapter 2 through a set of 

experiments. The usage of this hysteretic shape memory behavior is required in the 

usage of this SMA as an actuator and that’s why a position controller is needed for the 

SMA. 

The model- and behavioral-based approaches developed in Chapter 3 in three different 

models the AM, V, and O models that cannot be validated due to their dependency on 

the  wire  temperature  form  a  basis  for  future  research  in  building  a  generalized 

behavioral-based  model  for  the  shape  memory  alloy.  And  since  the  problem is  in 

different  behaviors  from different  configurations  of the SMA even with same NiTi 

material, the concern is not only to be able to use the SMA as an actuator in different 

systems, but also to allow using it in other applications, and that's why a model of the 

SMA material is required to understand its interaction and contribution in any systems 

dynamics  in  general.  The contribution  of  this  research  in  the  part  of  behavioral 

modeling of the SMA since it's the first research in SMAs to tackle the usage of the 

heat  transfer  equation  as  the  behavioral  model,  to  discuss  a  non-passivity  of  the 

material, to consider the effect of volume change in the SMA material, and to control 

by characteristic  parameter  change as  done in  the model-based controller  using the 

resistance as the parameter.

However,  the  non  model-based  approaches  derived  in  Chapter  4  in  two  different 

controllers the PI and the adaptive PID lead to a robust position control of the shape 

memory alloy wire. The advantage of this approach that it is not temperature dependant 

and could be used in any type of SMA wires with few tuning of the parameters and 

calibration of the system. 
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Furthermore,  the  PID adaptive  controller  derived  in  this  research  by  mathematical 

methods and enhanced by experimental  trial  and error using the error signal as the 

vector signal of all PID adaptive parameters can be used to control any linear or non-

linear plant with unknown dynamics with high consistency.  However, it  can also be 

used to tune the gains of a regular PID controller. 

5.2. Motivation and Future Work

Although all the non model- and behavioral-based approaches could not be validated 

due to its dependency on the temperature of the wire, but it  can be used on further 

research to test it under variable temperature function of the SMA; which needs another 

research on building temperature identification of the SMA in terms of the material 

coefficients and dimensions, hence a refinement of the heat transfer equation in terms 

of all temperature dependant variables will be needed.

However, as a motivation of this research, a lot of applications that need a fast actuator 

can use the SMA. Another suggestion as a future research for using the SMA material 

in telecom applications like in smart  antennas. In this case, the SMA required is an 

SMA plate so that to control the coverage area and orientation of the antenna beams for 

main lobes or side lobes under different criteria’s like in adaptive antennas based on the 

change  of  the  shape  of  the  plate  embedded  in  or  joint  to  the  antenna  receiver-

transmitter unit. 
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APPENDIX- A
SOFTWARE AND MATLAB CODE

A.1. dSPACE ControlDesk  Software User Interface
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A.2. Heat Transfer Function MATLAB Code

% ***Heat Transfer Equation Solution Using Runga Kutta 4th Order Method 

% ***to find the Temperature of the SMA wire

% ***Loaded data files data0xx.mat are saved from the dSPACE experiments 

clear all

close all

%--------------------------------

% Physical Values

%--------------------------------

r=0.1525e-3;

l=0.525;

A=2*pi*r*l;

v=pi*r*r*l;

R=4;
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ro=6450;

cp=1350;

h=150;

tau=(ro*cp*v)/(h*A);

D=R/(h*A);

load data013

%--------------------------------

% Raw Data Reading

%--------------------------------

time=data013.X.Data;

y1=data013.Y(:,1).Data;

y2=data013.Y(:,2).Data;

y3=data013.Y(:,3).Data;

y4=data013.Y(:,4).Data;

y5=data013.Y(:,5).Data;

y6=data013.Y(:,6).Data;

y7=data013.Y(:,7).Data;

%----------------------------------------------

figure  

subplot(3,3,1)

plot(time,y1)

ylabel('Force')

subplot(3,3,2)

plot(time,y2)

ylabel('Room Temperature')

subplot(3,3,3)

plot(time,y3)

ylabel('Motor Current')

subplot(3,3,4)

plot(time,y4)

ylabel('Wire Current')
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subplot(3,3,5)

plot(time,y5)

ylabel('Actual Position')

subplot(3,3,6)

plot(time,y6)

ylabel('Desired Position')

subplot(3,3,7)

plot(time,y7)

ylabel('Position Deviation')

N2=size(time)

%----------------------------------------------

% Data Filtering

%----------------------------------------------

figure   % draw data after filering

[f11,f22]=butter(2,0.05);

y1=filter(f11,f22,y1);

subplot(3,3,1)

plot(time,y1)

ylabel('Force')

[f11,f22]=butter(2,0.025);

y2=filter(f11,f22,y2);

subplot(3,3,2)

plot(time,y2)

ylabel('Room Temperature')

[f11,f22]=butter(2,0.005);

y3=filter(f11,f22,y3);

subplot(3,3,3)

plot(time,y3)
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ylabel('Motor Current')

[f11,f22]=butter(2,0.005);

y4=filter(f11,f22,y4);

subplot(3,3,4)

plot(time,y4)

ylabel('Wire Current')

[f11,f22]=butter(2,0.05);

y5=filter(f11,f22,y5);

subplot(3,3,5)

plot(time,y5)

ylabel('Actual Position')

[f11,f22]=butter(2,0.05);

y6=filter(f11,f22,y6);

subplot(3,3,6)

plot(time,y6)

ylabel('Desired Position')

[f11,f22]=butter(2,0.05);

y7=filter(f11,f22,y7);

subplot(3,3,7)

plot(time,y7)

ylabel('Position Deviation')

elong=508.2-y5;

sh=[time;y1;y2;y3;y4;elong;y6;y7];

save sh sh

Tr=mean(y2)

To=Tr;

%--------------------------------------

% Solution of the Differential Equation

% tau(dT/dt)+T=Di^2+Tr

% where tau=ro.cp.v/hA,  D=R/hA
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%Runga-Kutta 4-th order Method

%--------------------------------------

h1=0.01;

w(1)=Tr;

Tw(1)=Tr;

%dumy1=w(1);

N1=length(time);

for i=2:N1

    t=time(i);

    cur=y4(i);

    k1=h1*func2(tau,D,Tr,cur,t,w(i-1));

    k2=h1*func2(tau,D,Tr,cur,t+0.5*h,w(i-1)+0.5*k1);

    k3=h1*func2(tau,D,Tr,cur,t+0.5*h,w(i-1)+0.5*k2);

    k4=h1*func2(tau,D,Tr,cur,t+h,w(i-1)+k3);

        dumy=(k1+2*k2+2*k3+k4)/6;

    w(i)=w(i-1)+dumy;

    Tw(i)=w(i);

    t=t+h1;

end

figure

y55=y5+18;

ymax5=max(y55);

for i=1:N1

    strain(i)=(y55(i))/525;

end

plot(time,y55)

grid on

figure

yy4=100*y4;

elo=10*y55;

plot(time,Tw,time,elo,time,yy4)    

grid on

figure                               

plot(Tw,strain)
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axis([0,120,0,0.04]);

grid on

xlabel('Temperature [deg]')

ylabel('Strain')

APPENDIX- B
SIMULINK MODELS

B1. SIMULINK RTI-DSPACE Interface to the SMA Test Rig 

B1.1. Input from Test Rig to dSPACE SIMULINK subsystem
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B1.1.1. Masked Blocks under INPUT & SYSTEM GAIN

B2.  Inputs data conversion SIMULINK subsystem
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B2.1. Masked blocks under INPUT VALUE CONVERSION
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B3. Output data conversion SIMULINK subsystem.

B.3.1. Masked blocks under OUTPUT VALUE CONVERSION

B.4. Output from PC to dSPACE control box SIMULINK subsystem.
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B4.1. Masked blocks under OUTPUT & SYSTEM GAIN

B5. Input to Controller Simulink Subsystem

B5.1. Masked blocks under CONTROLLER INPUT
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B6. Output of the Controller SIMULINK Subsystem

B6.1. Masked blocks under the CONTROLLER OUTPUT

B7. Masked  blocks under the Heat Transfer Equation SIMULINK subsystem
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B8. Masked blocks of the PI Controller SIMULINK sbusystem

B9. Masked blocks under the Austinite SIMULINK subsystem
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B10. Masked blocks under the Martensite SIMULINK subsystem

B11. Masked blocks under the V-Model SIMULINK subsystem
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B12. Masked blocks under the austinite resistance of the Ohm-Model SIMULINK 
subsystem

B12.1  Austinite R1

B12.2. Austinite R2

71



B12.3. Austinite R3

B13.  Masked  blocks  under  the  martensite  resistance  of  the  Ohm-Model 
SIMULINK subsystem
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B13.1. Martensite R1

B13.2. Martensite R2

B13.3. Martensite R3

B14. Enhanced PID adaptive controller with error signal as the signal vector of all 
controller parameters.
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B15. Chaotic Signal generator using Chua’s equations set.

APPENDIX-C
TABLES AND FIGURES

TABLES
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Table C.1. Parameters used in the controller models

Mass (kg) Cn (F) h c (J/KgK) A (m2) V (m3) δ(μΩm)
1,2,3 0.8 150 1350 4.79*10-4 6.53*10-8 80

Tables C.2. Discrete Filter Values
Num 0.6042*10-3 0.7769*10-3 0.7769*10-3 0.6042*10-3

Den 1.0000 -2.7063 2.4541 -0.7451

Table C.3. Transformation Temperatures for the SMA used in the O-
Model
As oC Af oC Ms oC Mf oC
38 56 52 36

Table C.4. Effects of desired position frequency on the control error of 
the PI controller. 

Frequency f (Hz) Kp Ki Position Error Range (mm)
0.05 250 20 [-0.2,-0.7 ]
0.06 250 20 [-0.2,0.5]
0.1 250 20 [-0.42,0.7]
0.2 250 20 [-1.1,1.1]
0.3 250 20 [-2.1,1.3]
0.4 250 20 [-3.2,1.5]
0.5 250 20 [-4.3,2]
1 250 20 [-5.5,1]

Table C.5. Effects of desired position frequency on the control error of 
the  PID  adaptive  controller  under  different  set  of  adaptation 
coefficients. 

Frequency f (Hz) γ=0.3
Position Error 
Range (mm)

γ=0.5
Position Error 
Range (mm)

γ=1
Position Error 
Range (mm)
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0.05 [-0.8,1] [-0.7,1.1 ] [-0.7,1 ]
0.06 [-2,1.2] [-0.85,1.0] [-1,1]
0.1 [-3.4,3] [-1.7,1.7] [-1.6,1.6]
0.2 [-3.5,3] [-3.2,2.9] [-3.5,2.5]
0.3 [-3.1,3.4] [-3.2,3.2] [-3.2,3.2]
0.4 [-3,3.1] [-3.2,3.2] [-3.2,3.2]
1 [-4.3,2] [-3,3.1] [-3,3.1]

FIGURES

Figure  C.1  Experimental  Setup  at  Lab  327/SRS,  University  of 
Duisburg-Essen, Germany.
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Figure C.2 Hysteresis of the SMA

(a) Elongation versus Temperature applying one cycle sawtooth current. 
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(b) Elongation versus Temperature applying sinusoidal input current of 2A 
amplitude and frequency=0.05 Hz

Figure C.3. Test Rig signals 

(a) Result of running an experiment on heating-cooling the SMA. Applying 
one cycle sawtooth current input.
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(b) Result of running an experiment on heating-cooling the SMA. applying 
sinusoidal input current of 2A amplitude and frequency=0.05 Hz

Figure  C.4.  Snapshot  from dSPACE running  the  experiment  of  PID  adaptive 
controller as a position controller of the SMA with the error as the signal vector 
for all controller adaptive parameters.
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Figure C.4. dSPACE snapshot of the enhanced PID adaptive controller with error as the 
signal vector. Shows adaptation coefficient γ=1, controller adaptive coefficients Kp, Ki, 
and Kd equals 119,0.88, and 0.031  respectively.
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جامعة بير زيت
ّــة تكنولوجيــا المعلومات كلي

__________________________________________________________________

)Shape Memory Alloy (SMAالتحكّم بحركة سلك 
 باستخدام نماذج أنظمة تحكّم مبنيـة على أنظمة مرتبطة

بالمنظومة الرياضية والدائية والمنظومة اللأدائية

ًل لمتطلبات أطروحة مقدمة استكما
  درجة الماجستير في الحوسـبة العلميــة

إعداد
سـماح أحمد محمد مصطفى غـانم

إشراف
د. حسن شبلي
جامعة بير زيت
رام ا، فلسطين

أ.د. ديرك سوفكر
جامعة دويسبرغ إسّن
دويسبرغ، ألمانيــا

_______________________________________________
2008كانون أول، 
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ملخّص
 ) تتصرف بطريقة هستيرية بناءShape Memory Alloy (SMAًأسلك 

 على قدرتها على تخزين آخر شكل كانت عليه واسترجاعه تحت عمليات التبريد
 والتسخين الحراري للسلك. الهدف من هذا البحث هو تطوير نظام تحكّم حركي لسلك الـ

SMA المستخدم كـ actuator.

  للتجارب هو اختبار ومحاكاة التصرف الحقيقي لمادة السلك من خلل بناءالمجال الول
نماذج تحكم خاصة بذلك. التجارب انقسمت إلى عدة مجالت:

-AM باسم Austinite-Martensite: اشتقاق نموذج رياضي لطوريّ الـ - أول
modelللمادة باستخدام معادلة التوازن الحراري للمواد، من خلل استخدام طول الـ  
SMAليجاد الموقع الحركي المرغوب به، وذلك عن طريق تعويض معادلة المقاومة  

  للمادة. بينما تم فرض حالة من تصرف المادةAustiniteالكهربائية للمواد في طور الـ 
  للمادة. تم اختبار النظام منMartensiteبجزء فاعل (مواسعة كهربائية) لبناء طور الـ 

خلل المقارنة بين الداء الفعلي للنظام بأداء التجربة، مشكلين نظام تغذية مباشر للتحكم.

ًل للنموذج الول أيVolume-model: اشتقاق نموذج رياضي باسم الـ - ثانيا   استكما
ّير بحجم سلك الـ  باستخدام معادلة التوازن الحراري للمواد، مع الخذ بعين العتبار التغ

SMA تحت طوريّ الـ Austinite-Martensite.خلل التبريد والتسخين للمادة 

ّير بالمقاومةOhm-model: اشتقاق نموذج رياضي باسم الـ - ثالثا   لحساب التغ
ّيار اللزمة لحركة السلك لمواقع  الكهربائية للسلك خلل الطوار المختلفة ليجاد قيم الت

معينة. تم اختبار النموذج بنظام تغذية مباشر للتحكم.

 كل هذه النماذج لم يتم التأكد من قدرتها الفعلية على تمثيل التصرف للسلك أي التحكم
 بموقعه بسبب اعتمادها الرئيسي على حساب درجة حرارة السلك. في حين أن درجة

 حرارة السلك غير متساوية على جميع نقاط السلك السطحية،  بينما درجة حرارة السلك
ّير  المحسوبة بواسطة التقريب للحل العددي لمعادلة التوازن الحراري ل تتوافق مع التغ

الحقيقي والسريع لحرارة السلك في الزمن الحقيقي للنظام.
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  للتجارب هو اختبار واستخدام أنظمة تحكّم ل تعتمد على خصائص السلكالمجال الثاني
 . تمAdaptive PID Controller و PI Controllerوسلوكه، وذلك باستخدام 

  بأداءSMAاشتقاق واختبار النظامين بنجاح وقد تم التحكّم من خللهما بحركة سلك الـ 
ًا بينما كانت هذه النسبة أعلى تحت ترددات عالية  ممتاز. حيث أن نسبة الخطأ قليلة جد

بسبب بطء ردة فعل السلك تحت التبريد الطبيعي.

:النتائج المستفادة من البحث

 فهم دقيق لقدرات المادة، حيث أن النماذج الرياضية التي استخدمت قد.1
 تم اختبارها ببيئة حقيقية أي بتجارب فعلية على النظام و لم تعتمد على الـ

Simulation.
  يستطيع التحكم بحركة السلك بشكلTuned PI Controllerإيجاد .2

دقيق.
  يستطيع التحكم بأي نظام خطيAdaptive PID Controllerإيجاد .3

 PIDأو غير خطي و بمتغيرات مجهولة، بحيث يمكن إيجاد متغيرات الـ 
controller.بتعيير مبدئي 

 الفائدة من المجال الثاني للتجارب غير المرتبطة بخصائص السلك.4
 وسلوكه هو عدم اعتمادها على درجة حرارة السلك بينما تحتاج هذا النوع من

أنظمة التحكم تعيير بسيط من خلل التجارب.
 من جهة أخرى قدّم هذا البحث قاعدة لتخطيط تطبيقات هندسية باستخدام.5

 والـSmart Antennas في مجالت ميكانيكية و كهربائية مثل SMAالـ 
Autonomous Systems...الخ ،

 تناول هذا البحث طرح جديد لستكمال البحاث في مجال بناء نموذج للـ.6
SMA.لشتقاق واستنباط نموذج عام يجمع خصائص المادة وسلوكها 

  أو ما يسمى بالنيتينولNiTi من نوع الـ SMAهذا وقد تم استخدام أسلك الـ 
 DS1104 ونظام الـMATLAB/SIMULINKواستخدام برامج الـ 

dSPACE .لجراء التجارب 

III


	1first pages
	Dedication
	Acknowledgement
	List of Tables
	List of Figures
	Abstract

	Chapters - Copy
	Chapter 1
	Introduction
	1.1. SMA Material
	1.2. Applications of SMA
	1.3. Hysteresis in SMA
	1.3.1. The Austinite Phase 
	1.3.2. The Martensite Phase


	Chapter 2
	Experimental Setup
	2.1. Introduction
	2.2. SMA Test Rig
	2.3. dSPACE System 
	2.4. MATLAB/SIMULINK
	2.5. Experimental preparation
	2.5.1. Testing the Hysteresis


	Chapter 3
	Model- and Behavioral-Based Control of SMA
	3.1. Introduction
	3.2. Behavioral-Based Approach
	3.2.1. The AM- Model
	3.2.1.1. Heating Phase- Austinite
	3.2.1.2. Cooling Phase- Martensite
	3.2.1.3. Heating Cooling Combined 
	3.2.1.4. Experimental Results

	3.2.2. The V-Model
	3.2.2.1. Experimental Results


	3.3. Conclusions on the Behavioral-Based Approach
	3.4. Model-Based Approach
	3.4.1. The O-Model
	3.5. Conclusions on the Model-Based Approach



	Chapter 4
	Non Model-Based Control of SMA
	4.1. Introduction
	4.2. PID Controller
	4.2.1. PI Position Control Experimental results
	4.3.1. MRAC Control
	4.3.2. STC Control
	4.3.3. Designing the PID Adaptive Controller
	4.3.4. Experimental Results
	4.3.4.1. Changing the desired position Frequency:
	4.3.4.2. Changing the adaptation coefficient:
	4.3.4.3. Using Chaotic Wave Signal  Input:


	4.4. Conclusions on the non model-based approach

	Chapter 5
	 Results and Conclusion
	5.1. Conclusion
	5.2. Motivation and Future Work

	References
	APPENDIX- A
	SOFTWARE AND MATLAB CODE
	APPENDIX- B
	SIMULINK MODELS
	APPENDIX-C
	TABLES AND FIGURES

	last pages
	ملخّص


